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CONSISTENCY EBY DEFAULT

Comsistency by Default

1 Tritroductians

provide the wvehicle for non-trivial

Such are. important

y
Bt

@ zituations. S £ or

; AT gz, for examples, Friest and Routlesy 17821, ch

4, ol 14 of reprint.? I =hall not survey them here. However, an
impmrtanh theme im the following investigations is the
meachanization of infersnce procedures. Hence, let me give one
swampla which is pesrtinent to that. Automated resascning systems

may well end up in inconsistency. This may be s0 since the
information on  which our theorem provar works 1s  inconsistent
(zma@ Belnap [19771): or it may be so dus to the very naturs of

the inferential machinery. Thus, the reaszoning essential to any
oo gulf*fﬂ Al system is itself wont to produce contradictions and

p;rada {s@2, ®.9.. Asher and Kamp [1%8&1, Priest [192+1).
Since Lanbisten:y is undecidable, theorem provers must learn  to

liva with it; thus, they must use a paraconsistent logic.

Despite the fact that inconsistency is unavoidable, we have a
right to sxpect consistency most of thz time, since consistency
iz thes norm. I shall not defend this position here. (It 1is
defended in detail in Friest [19871, 2.4.) Let me just point out
that widespread inconsistencies in rules, codes of law, and our
thought about the cognitive states of ourselves and others, would
make these entire "language games" a mockery. CHence consistency
ig a natural default aszsumption: the situation is assumed to be
innocent of contradiction until proven guilhy.

Ariothzr claim that informs the following investigations iz  that
in consistent situations, classical logic is correct. I should
say immediately that I make this claim only with respect to the

sternsional connectives A, v, and =, and the guantifiers Y and 3.

Even so, the claim is not uncontentious. I shall not defend it
at great length here. (It iz defended in Friest [19871, esp ch
8.) Ferhaps the major challenge to it comes from the following
thought. Just as there are inconsistent situations that poss a
threat to classical principles, s0  there are incomplete

situations, where we have neither of x and -x, which equally pose
a challenge. The only point that I shall make about this here is
that it is rnot at &all clear that such situationms, 1if arnd when

they exist, pose a challenge to classical logic.  For sample,
suppose that a data base is incomplete sinmce it has been  told
neither o nor -wx. We would not, for that reason, want to be

informed that ov-x is not true; presumably it is: cur information
iz just incomplete. '

Thers are more radical challenges to the claims of the previous
two  paragraphs. However, since *this is not & philosophical
papar, I =hall mot go into them hers. At least I have laid my
assumptions on  the table. And given thess two claims, that
consistency is a correct default assumption, and that classicsal
logic is correct in consistent situwations, it f
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casz, but what doss “until and unless inconsistency interfarzs
with the inference’ mean in general? To give a preciss answer Lo

Wit o
thiz iz the point of this paper.

To  answer the guesstion we nesad fFirst, on a system of
paraconsistent logic to be usad i follaows I shall  work
with the logic LF. {(Ses Friest 1 1, appendix, or FPriest
El?B?], ch E.2 I think that this is the correct paraconsistent
logic for the extensional connectives, though, again, I shall not
defend this here. It is certainly zimple, and almost all of what
follaows can be gensralised to an arbitrary paraconsistent logic
provided only that its extensional theorems coincid with

classical theorems. This iz trus of most relevant paraconsistent
logics (for a survey of which see Routley e¢ &l [178Z23); and

providns 2nough Justification for using LF in these
investigations.

In what  +follows, ZOme no*ation and one particular result
CDNCPFHIDQ LF will be useful. The notation is as follows: I will
use X, Bs ¥Ys «ea for formulas; p. q, "y wea« for atomic formulas;
Ze Ta wew Ffor sets of formulas. ! will mean xA-o. (' will
always have narrow scope. p) Apart fraom LP, I will refer to four
other logics: classical logic, L, and three extensions of LF:
LF+,  LF* and LF™, These will get abbreviated to +, ¥ and m
respectively. I+ ‘X is any of the above systems FX will denote
its conseguence ralation and X will be the z=t of consequences
of the set I under EX, The theorem is

Theorem 0

LEC-x iff ZE-"ovf3!

Proof

See Friest [19871, p 14°.

o : .
It follows from this result that ormly a single rule of inference
reed be added to LF to get classical logic: xXvE! . I will call

this rule "contradiction suppression®, C8 (Routley ¢ al [19821,
ch 2. =2c 1. Thus, one way of formulating our problem is this

“a

under what conditions may the rule C8 be used?

i3
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Obsary first, i cas2 it iz not already ohvicus, that however
WE S0 the gpreblem a non-monotonic logio will result, For p
should 1law from {pvag!?y bDut not from 43 o'y Artificial
intsll m& has =studisd oonemonotonic which implement
Var i oLl inds of desfault assumptions. arnd  large, the
technlgu zod  hhers are not particula ropriate 1ﬁ the
presant MeDarthy's techrnigues of o ription (L1930])
15 geEars imising the number of ent f a certain klnd,
rather e number  of formulas of rtain  kind (viz.
contradil frother way of implementing default reasoning
used by  MeDermott and Dovle (Modermott  and Doyle (19201,
Modermatt [19821) employs a modal possibility operator, M, and
rules of the faorm: X, ME/Y (Y is inferred from x and the fact that
B is possible - in a certain modesl). This suggests the

implementation of C5 as a default rule: ovi3! ,M-(3!)/x, ijchr.
this will not work since -(R!Y is & logical truth, as, refo

is M-(31). Classical logic would therefore be the re:ult, and

inconsistent theories would collapse into triviality.

Arncther approach to default reasoning pursued by Reiter (0173001
gives results similar to the previous approach in the standard
case, but gives rather different results in the presemnt one.
This approach implements rules of the form: Fx, KB /S FY. In
this context, the rule C5 would become:

FavB i, KB! / bk (1)

0f course, this rule makes little sense proof-theoretically.
Howevar, we can make semantic sense of it by defining inferential
extzrnsions  (augmentations) of a set which, in a sense, satisty
(1), as follows. '

Pefinition Q@
'is an augmentation of T iff:

i) =z

ii) T is closed under E-®

iii) if av@dtel and B4 then wel )
Each augmentation of I specifies a "cohsrent" set of default
consequences of L. Notice that such extensions always exist.
The set of all formulas is such a set (and is also & perfectly
good paraconsistent theory). Unfortunately. however,
augmentations - are by no means unigue. Let L be any classically
consistent set of sentences; then any classical theory
containing L satisfies the above conditions, and of these there
will, in general, be many. Even if I is inconsistent there will,
in genesral, be many augmentations. This follows from the
following theorem.

Tbeorem Z

lLet L be any set of formulas such that I E-"x then there is an
augmentation, Ny, of £ such that Mo (and hence x£7).



Given =uch & D owe can o exztsrnd it Lo & prime, deductively closed
=2t I, such that FE-Pa, (Sea, B.0. Friest L1807, ey ol
Routley ef =1 [1%823, p IZ07 f.3 By theses propertiszs T is  an
augmentation of L.

a

Now, let ID={p'wvg!'Z. Let L, = {p!vg!y, p!l:s Z2 = {p'vg', qg'.
Note that Z,p-Pg!  and LaE-Fp!. By the above theorem, thersz ars
augmentations of L, and Ia, M ard Mz, respectively, such that
Fip-Fg! and Tzp-"p! Then My and Mz are distinct augmentaticns of
.

Given .a zst of sentences,. it might make some sense2 to choose an
augmentation indifferently. This, For example, is what Dovyle’s
Truth Maintenance System does. (Eee McDermott [19821, pp 43-4.)
However, from a logical point of wview, this iz obviously
arbitrary. The only suitable candidate for the set of absolute
default conssgquenca of £ is the intersection of all
augmentations. Thus we have the following:

Definition 7
ZF*x iff xeNilM; F is an augmentation of IX

Z* is the natural candidate for the set of default conseguencess

of L. Unfortunately it is no good, since it does mo better than
LF its=lf. In fact, E¥ is exactly E-™. The inclusion from right
to left is obvious. The converse follows immediately from

theorem 1. Thus F* violates Maxim M.

-

=% *Conseguence: LF*

If one considers the default rule (1) above, it might strike one
simply to define the default conseguences of T simply as the set
of all those o such that for some § ZF-Pavf3!, but IDp-®p!., This,
however, is far too liberal, and will not do. For let Z={p!'.
Then, as may easily be checked, IE-"gv{-gap)!, but ILE-"™(=qap)!
Hence, an arbitrary g would be a consequence. This is not quite
triviality  (since it is only an arbitrary atomic Fformula that
follows), but it is obviously near engugh to render the
definition of no value.

Is there, perhahs, some way of modifying this idea to make it
work? There is. The matter is discussed in Friest [19871, and,
to cut a long story short, the following account does the Job.
Let us define *conssguence as follows:

Definition 2
ZE*x iff (i) ZE-"ax or
(ii) for some [ ZE-Tavi!,

where IZRE-"R! and IZES® (v ) (x/ )

where (Y/&§) denotes substitution of & for Y. (The first disjunct
is necessary since 1t does not imply the second.) What makes



appropriate notion of default conssquence ars the

|

*ronsesquenos A
fsllowing facts.

Theorem 2

.
i)  Eemcoxcpow,

t

)]
G

[

ii) In _Qe;eral, these containments &re oropse., (Thus, For
2xample, ip, -pval B* g anmnd

iii) But if I is {(classically) consi

ivy Moreover, &' D* iff x!egi-™,

V) Thus, Z* is trivial iff Z-® is trivial.

()

LS

n

These Ffacts show that E* satisfies Maxim M. But despite these
pleasing properties it has some awkward features. To start to
see theze, we nesd first s lemma and a theorem. Both of these

concern only propositional logic.
Lemma

I+ there iz a B which satisfies the second disjunct of the
Jefipiens of definition 2, it needs no more than 9 propositional
parameters in addition to those occurring in Duixl. (These can,
of course, be the first three on some arbitrary list.)

Proof

To see this, take any B which will do the Jjob. We know that
DE“Pavf!, IDRVPR! and ZEV-Tavii(x/-x). Let v and p be evaluations
of the propositional parameters which establish the last two
facts., Consider the propositional parameters that occur in £ but
not in Zulxi. Define an equivalence relation, ™, on these by:
p~¥g iff vi(p)=v{(g) and plpi=pl{qg). Since an evaluation can take
only 2 possible values, there are 9 possible eguivalence classes.
Choose one variable from each class, and substitute it for all
the others in that class in B. Call this formula B°. Since 7
is a substitution instance of R, which has not affected any of
the variables in Zu{x¥, ZF-"avp"!. But, by construction, v and p
refute ZF-PR! and ZEYP(xvR!) (x/=- ) respectively. Thus, B" will
do the job.

(Y]

We can no& proves:

Theorem 3

E* is decidable.

_Proof

We show this by giving an algorithm to decide whether IZF*x where

E is finite. To check this, Ffirst check ZE-™x. (Since LP is
decidable, this is effective.) I mot, proceed. Next, we ssarch

S



Fowhich withn: of the Jdefinien o
I+ *thers at most ¥ paramstsrs
than +those e preceding lemma,
ig, of cours such  formulas, but
moall be put t odisjunctive normal
There ars these (2 {2 {n+21)),
thers arsa These can all be
anumsrated, and we f- thess iz a suitable
f. IFf mot, the pro
a
This theoram illustrates the Ffirst awkward property of
*consequences, which is  that it is computatienally complex to
handle. The algorithm sketched in the proof of theorem I is of
order of complexity 272", which is horrendous. Doubtless it
is not the most efficient algorithm, but because f the
existential guantifier in the definiens, no algorithm is going to
he wvery swifht. The situation is worse if we move to first order
logic. F-F iz B, in the arithmetic hiegrarchy; and as ong can

check, E* is no worse than Ex. I suspect that in this case there
is no way at all of putting a bound on the search for (3 (though I
have no proof of this at the moment). If this suspicion is right
then E* is Iz There is therefore no hope of even a semi-
decision procsdure.

A second, and more major, problem with *consequence is  the
following:

Theorem ¢
Z* ig not closed under E-™,
Proof

Let E={p, -=-pvg, 1, =—wv-ql. Now, ZIZF-® gvp!, but Z¥-™ p! and
Dp-FPagqvp! (as simple models show). Hence ZE*g. Similarly, using
Fa LFE*-qg. But ER-Tga-qg. Hence IZRE* ga-q. (Theorem 2 iv).)
Thus, this instance of adiunction fails.

’

0

The non-closure of I* under F-™ is problematic, since it means
that we cannot establish certain *consequences of T and then
carry on LF reasoning and be sure that we are sate. Thus, 1in a
sense, *consequence undercuts the safeness of LF, upon which is
piggy—backs. ' : :

4 Minimal Inconsistency: LF™

Is there any way of finding a default reasoning for consistency
that does not have these draw-backs? There is. To motivate it,
consider the following. We are trying to make precise the idea
that there is no more inconsistency around than we are forced to
assume., A natural way of rendering this idea precise is by
restricting ourselves to those models of the premises that are as
consistent as possible, and then looking to ses whether the



conclusion 13 im all of theszs. (This idea i= due L Dirk
Eatens C19841. =, suppose that we have detined an ordering
of inconsiste . on interpretations, so that vop iff g is
s & incanst than v, Thern we can detine wminimal
incaonsistensy onregusnie, F™, as follows:

-
i
D
3
i
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-+
1
-
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]

i) v very member of L iz true urder - v
2., levip) for all (Bel).
iz a model of T and if puv, H is
ot a model of I.
.

iii) TEmx iff every mi model of Z 1is a model of <{xi.

ii)d ~ is a mi modsl of I iff

The next guestion is how to define the ordering, <. For the rest
of this section we will consider propositional logic only. One
obvious possibility is to define viy to mean that v makes fawer
formulas (in the sense of cardinality) both true and false than
does. Howsver, it is easy to see that this will not work, since
any inconsistent interpretation makes an infinite number of
formulas both true and false; S0 any interpretation of an
inconsistent theory would be - mirmimal. Em would therefore
copllapse back into F-®  for inconzistent ssts of premises,
violating Maxim M. We might try, instead, to define vip to mean
that <+ makes fewer propositional parameters both true and false
than p does. Thiz is much better, but gives the wrong results,
too, when I requires &an infinite number of parameters to be
inconsistent, for example, if E={p.!; 1510 (where , {pa; 1203 is
an enumeration of the propositional parameters). For then any LF
interpretation will have the same number of inconsistent
paramaters, viz, Me. Thus, again, F™ would collapse into E-F.
Thiz is undesirable since, by the gloss on Maxim M, we would
still like fu{pe,-Pevpil) to give us p. in the example.

Thus, ordering by cardinality will not work. Another possibility

is ordering by set theoretic containment. Thus, 1let vie = {g ;
1evig!)Y and v'ie = {3 tev(x')}. Then we might define vy either
as vimcules, or as viecp!s (where < is proper subsethood). Note

that in either case the ordering is only a guasi-ordering. Thi s,
however, is not important. '

Which definition of < should we use? Consider the secona

definition first (that employing formulas, not propositional
parameters) . This is, in fact, unsatisfactory; for if we did

define it in this way we would have the following:
(Counterfactual) Theorem 5

If £ is any inconsistent, finite, set of sentencés, then IDm=I-7,

Proof

Note first that E-FeZm. (1f truth is preserved in all models it
is preserved in all mi models.) For the converse, SUppoOse that
39 il 38 Clearly, we need concern ourselves orly with

interpretations of the parameters in Dulxl. V, the set of such
interpretations, is clearly finite. Let V° be the subset of V of
evaluations which model E but not {x3 (i.e. v{x)»={03%). This is
finite and is non-empty. Choose a member of V', v, such that

~



there is no member of V', d, such at pHlepov! e, This is possible
z=ince VT ois finmihe. We will show that v is a mi model of Z (NE,
with respect to !v) and hernce ZE"x. Suppose for reductio that u
iz a model of Z and flepcv!e, From the sscond of these it follows
that plecvie. Since g is a meodel of £ is follows that lev(a).
Moreowver, since L is inconsistent, it follows that Ffor some
propositional  paramehter, g, HQ)={1,03 (o p would make sversy
formula consistent). But then plxagld={1,03, and w(xagql={0k,
Comtradiction.

(8

Counterfactual theorem 5 shows that if we were to define ¥ using
'  then for (finite) inconsistsnt sets, F"™ would not be an
extension of E-®, viclating Maxim M, ‘as the gloss on it showed.
Thus !y is an inadeguate measure of the consistency of v, We
thereforse choose v!e, and drop the "»’:

Definition 4

I+ p and v are interpretations:

1) v! = {p3y levip!)l

ii)  paw ifFF oplev!

What, mnow, are the properties of F™? Let us start with a few

2xamples.

a) First, ID={g!, p. pvry F™ r. To see this, note that for any
{mi) model, v, of & qev!, and legvip). But lev(-pvr). Hance
levi-p) or levir). But the first of these is not possible in an
mi model since then pev! and there are models of E, p, for which
ul is dust {g3. Hence, in an mi model, v, lev{r). This shows
that counterfactual theorem 8 is indeed counterfactual.

b) Next I={p!vr, plvg!y K™ r. For if v(p)={0,1> and
() =v(r)={0}, v is an mi model of E but not {r. (v is mi, .
since if we made p conmsistent we would have to make ¢
inconsistent.) Note that ZE“®rvp!, Ip~"p! and ILE-F-rvp!, as
simple models show. Hence IZE*r. Thus *deducibility does not
imply mi-deducibility.

.

c) Finally, ={r!y, svp'> Bm (ras)!. For in any model of I, r!
is true. Moreover, .in any mi model s is true. Hence (FAs)! is
true. Note that IZp*(ras)! since ZE-™(ras)! {(by theorem 2 iv).

Hence mi-deducibility does not imply *deducibility.

Some genesral properties of mi-consequence may be summarised in
the following theorem.

Theorem 6

i) TP crm,

ii» In —Qeneral, this containment is proper.
iii) Emcicw-

iv) In general, this containment is proper.

V) If £ is (classically) conmsistent then IS-=Im,
vi) IEm is closed under k-7,



Proof

i) If truth iz pressrved in all models it is  certainly
preserved in all mi modsls.

ii)  Sse suample &) above., IDEVF-,

iii?y Define An interopretation to be ol i ift D)
propositional parameter takes the value (1,07, The class of
classical intsrpretations characterisss classical logiac.
Obviocusly if & model is classical it is mi. Henoe i+ truth
is pressrved in all mi models it is pressrved in all
classical models.

ivy Clearly, {p!ipmg!. But {p!lkEC-g!.

W If £ is consistent then the mi models are ewactly the

i
classical models.

vi) Suppose L™E-Fx, Then & is true in all models of IEm. a2
fortiori, o 1is true in all models of I, and hence all mi

o

These facts show that mi-consequence has the right kingd of
properties for a notion of default inference, and, in particular,
unlike E*, IEm ig closed under F-F, Em ig also =asier to handle
computationally than E*, as the proof of the following theoram
shows:

Theorem 7
E™ ig decidable.
Proof

The following algorithm is obviously a decision procedure for E™
(for Finite sets of premises). To determine whether IF™a,
snumerate the set of all the parameters in Zuol«l. This is
finite. Suppose it has cardinality n. Enumerate all the
interpretations for these parameters. {(This set has cardinality
I ) Check to sse which of these is a model of £ and discard
those that are not. Compute v! for each remaining model, wv.
Discard all those for which there is some g such that pldvt,
This is essentially a sorting operation, and so can be done in
time FT"n.log(3*n). What remains are the mi models of L. If x is

not true in any ong of these, consequence fails; otherwise it
passes.

a

This algorithm is not the most efficient. It ié_of order n.Z"n,
which, though computationally horrible, is still much better than
the 272N of E*. Thus, we see that, at least from

propoeszitional  infsrences, E™ betters F* on the two problems I
pointed out in section 3.

A further fact of interest about mi—consequence'is the following:
Theoren &

I§ T is finite then ™ ig trivial iff EZ-™ is trivial.
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right o l=ft i tuz  of iYooof
e ohher dirsct at TP e rmone
omome formul a, folle +
parameter, D, ; f ovo
han vow oan prove all  formulas, as
3 Thern there iz an LFP interpretation,
modsls 0 but o not {p!i. Lat Y be the szt of 211 mo
ordered by 2. We rmeed consider only evaluatio
propositional parameters of Dudp!}, and since Dwip!l i ‘
is Finite. It f5llows that sither v is mi, o thers is a mi
modael 4w, In either case, there is a mi model of £ which iz not
a model of {p!'l. Hence Ef™p!, i.2., £ iz not mi-trivial.
a
The above theorem is reassuring =since it shows  that inm
propositional  logic ™ deoes not blow up unlesss IV does  (for
finite ). Hence thers i3s3 no more danger of collapss into
triviality with BE™ than with BE-™, Unfortunately, the proof of
the above theorem depends essentially on the fact that I is
finite. hether or not thes theorem is true if £ is infinite 1

don*t know.

also that therz are some extensions of LF where mi-
uence may well blow up 2ven where ordinary conseguence
ntt. Consider the extension of propositional LF to include
iy an implication connective, <+, satisfying modus pornens 11}
propositional  guantifiers  (for example, a suitable relevance
logic). Now consider the set of formulas D={dp(p ) 3ul py i9pier !
120, whers the indexation enumerates propositional parameters,
Clearly, L may have & non—-trivial model (for example, one in
which pe is not true). But it has no minimal model: Suppose it
did. Call it w. Then there must be a least i such that p,evi.
Now consider the interpretation, p, that is the same as v except
that the least i such that piagp! is one greater, This is a
model, and pgiv. Contradiction. Thus, EZ™ iz trivial since any
formula is true in all mi models of L (since there aren™t any).

=
Q
it

Theorems such as theorem 8 are not, therefore, to be taken for
granted. {(Compare this situation with that for F*, where, as we
noted (thesorem 2v)), guite generally, I* is trivial iff Z-™ is.
I* does, therefore, have some advantages over L™,

jn

First Order Eﬁ

Let us now turn to the first-order case. To apply the machinery
of minimal inconsistency to this we need to define the notion vi,
where v is an interpretation of the lamguage, L. How is this to
he done? What corresponds to the set of propositional parameters
irm the propositional case is the set of atomic facts in v, To
make this easy to talk about, let L. be the language, L, with all
constants removed, but vtended by a canonical name for each
member of the domain of . (We might as well take the domain of
v, itself, as the set of names, each naming itself.) Now define
v! as follows:

10



Definition 5

.

vi= {py p iz ain atonic! formula of Lo and lev(p!)?

& littls care nesds to bs ftaken at this point. Faor if we now
defined < &z in the propositiconal case, the wrong resulits would
Ersue. et L be the languages wiith Just two momadic predicates, P
armd G, Lt I ={Pu(Fu!')>, For svery intesrpretzstion of Z, v, with
domain D, ~w!z{Pdy  dzDX. Thiz iz minimissed by setting the
cardinality of D to 1 (since an interpretation must have at least
one member) . Thus, every v with mimimal v! has orne member.
Hence, @.0., ey -0¢ would be an mi consaquence of L, which it
obviously ought not fto be.

Clearly,

interpretations with different domains. Thus,

e

Definition &

psy iff g and v have the same domain and p!ev!

peccur in the diagram of an interpretation,

saying that g and v have the same domain and the diagram of o

a proper subzet of the diagram of v.

Having got the appropriate definition
first order logic. Theorsm & continues to hold,
checkad. Theorem wa would hardly
order F-® igs I, in the arithmetic hierarchvy,

he decidable. {In fact, it must be at least
logical truths coincides with that of LP and CL.
complexity it does have I do not know.
appeals to
vocabulary are finite in number.
first order case, of course;
iz any analogue of thecorem

krnow.

-
bl

R

=

for first order 1

6 Conclusion

It

what has gone wrong is that we ought not
wi2

30 the proof fails.

to

be comparing

should define:

Since at least one of every atomic formula and its negation must
this

is equivalesnt to

straight,
consider what happens to the theorems of the previous section

is

let now

in-

e

as may easily be

wpect to hold:
E™ is not likely to

since first

since its set of

)

the fact that the interpretations of a fixed
This is no longer true in
Whether there

ogic,

What
The proof of theorem

recursive
3
. Finite
the
I

do not

iz clear from the above that F™ seems to have the right kinds

of

property for a default logic for consistency.

I

propose
that some
important

it as such.,

of th
bearing

@
on the issue.

It will be clear from the above,
open questions concerning

it may
I therefore conclude

therefore
however,
have an

with a

sumnary of these.

Does thsorem 8 hold for infimite IZ7

i)

ii) Do any analogues of theorem 8 hold for first order logic?

iii) Where is First order ™ in the arithmetic {or analytic?)
hierarchy?

iv) How can first order E™ be handled computaticonally? That is,

what algorithms capture (a significant part of)
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